STRAIN-BASED DESIGN AND ASSESSMENT IN CRITICAL AREAS OF PIPELINE SYSTEMS WITH REALISTIC **ANOMALIES**

Contract Number: DTPH56-14-H-00003

Progress Review

Ressources naturelles Canada

Center for Reliable Energy Systems

5960 Venture Dr., Suite B Dublin, OH 43017 614-808-4872

Project Review Meeting

September 09, 2014

Overview

- □ Project objectives
- Overall status
- Material procurement and specimen fabrication
- □ Small-scale tests
- Analyses and model development
- Summary and future work plan

Project Objectives

- Develop practical and ready-to-use guidelines and tools for strain-based design and assessment (SBDA) of pipeline segments containing:
 - Transition welds,
 - Corrosion defects, and
 - Dents.
- □ The limit states include:
 - ❖ Tensile strain transition welds, corrosion defects
 - Compressive strain transition welds, corrosion defects, and dents
 - ❖ Burst pressure under longitudinal strain corrosion defects

Contractual Status

- Contract modification #2
 - Completed early September, 2014.
 - The project is now fully funded.
- □ Contract modification #3
 - Replace fittings with pups of various thickness to simulate transition joints
 - Add reference full-scale tests
 - Add associated pre-test analysis, small-scale testing, post-test data analysis, and model evaluation
 - Plan to submit to PHMSA by 09/15

Progress by Tasks

- □ Task 1 confirmation of work scope and work plan
 - Completed
- □ Task 2 development of test protocol and procedures
 - Completed
- □ Task 3 pipe procurement and weld fabrication
 - Extensive activities and major focus so far
 - The completion time is delayed by 1-2 quarters
- □ Task 4 small-scale tests
 - Test matrix finalized
 - Communicated with ASAP about the division of tests.
 - The completion time is delayed by 2 quarters.
- □ Task 5-8 analyses and model development
 - On schedule.
- □ Task 9-13 full-scale and curved wide plate tests
 - The completion time is expected to be delayed by 1-2 quarters.

Progress by Tasks

Task No.	Task Description	Quarter from Project Start										
		1	2	3	4	5	6	7	8	9	10	
1	Confirmation of Work Scope and Development of Detailed Work Plan											
2	Development of Test Protocol and Procedures											
3	Procurement and Fabrication of Test Welds											
4	Small-scale material characterization tests											
5	Update and Development of Tensile Strain Models of Pipes without and with Fittings											
6	Update and Development of Compressive Strain Models of Pipes without and with Fittings											
7	Development of Integrity Assessment Models for Pipes with Corrosion Defects											
8	Development of Integrity Assessment Models for Pipes with Dents - buckling											
9	Full Scale Tests - Compressive Strain Capacity of Pipes with Fittings and Anomalies											
10	Full Scale Tests - Pressure Containment of Pipes with Anomalies and High Longitudinal Strains											
11	Full Scale Tests - Tolerance to Hoop Strain under High Longitudinal Strains											
12	Full Scale Tests - Tensile Strain Capacity of Pipes in the Presence of Corrosion Defects											
13	CWP Tests - Tensile Strain Capacity of Pipes with and without Fittings											
14	Development of Guidelines on SBDA											
15	Project Management, Communication, and Reporting											

Original

Expected

Material Procurement - Pipes

- □ 36" OD, 16-mm and 19-mm WT, X70 pipes
 - For CWP tests
 - ASAP donating pipes
- □ 24" OD, 12.7-mm WT, X80 pipes
 - For full-scale post-buckling burst tests
 - Pipes with C-FER
- □ 12" OD, 6.4-mm WT, X60 pipes
 - ❖ For other full-scale tests
 - ❖ To be purchased from Evraz
 - Seven to ten 30-ft joints, two or three heats
- □ 12" OD, 7.9-9.5 mm WT, X60 pipes
 - For making transition welds of full-scale pipe tests
 - To be finalized and procured once other pipes are acquired

Specimen Fabrication – Making Girth Welds

- □ 36" X70 pipes, FCAW welds
 - To be provided by ASAP
 - Available by the end of September
- □ 36" X70 pipes, SMAW welds
 - Project to contract CRC to make the welds
 - ▶ Need to decide on welding process / parameters
 - ▶ Low hydrogen downhill vs. cellulosic welds (Exx10 electrodes)
 - In the process of obtaining a quote from CRC
 - May have cost implications
- □ 12" X60 transition welds
 - Fabrication plan C-FER

Small-Scale Tests

☐ Testing matrix in a separate Excel file

Analyses and Model Development

- Testing support: (1) specimen design and (2) instrumentation plan
- □ Engineering analysis
 - The effect of joint-to-joint pipe strength variations on tensile strain design
- □ Related tasks

Task No.	Task Description			Quarter from Project Start								
110.					4	5	6	7	8			
1	Confirmation of Work Scope and Development of Detailed Work Plan											
2	Development of Test Protocol and Procedures											
3	Procurement and Fabrication of Test Welds											
4	Small-scale material characterization tests											
5	Update and Development of Tensile Strain Models of Pipes without and with Fittings											
6	Update and Development of Compressive Strain Models of Pipes without and with Fittings											
7	Development of Integrity Assessment Models for Pipes with Corrosion Defects											
8	Development of Integrity Assessment Models for Pipes with Dents - buckling											
9	Full Scale Tests - Compressive Strain Capacity of Pipes with Fittings and Anomalies											
10	Full Scale Tests - Pressure Containment of Pipes with Anomalies and High Longitudinal Strains											
11	Full Scale Tests - Tolerance to Hoop Strain under High Longitudinal Strains											
12	Full Scale Tests - Tensile Strain Capacity of Pipes in the Presence of Corrosion Defects											
13	CWP Tests - Tensile Strain Capacity of Pipes with and without Fittings											
14	Development of Guidelines on SBDA	T										
15	Project Management, Communication, and Reporting											

Analysis in Support of Large-Scale Tests

- □ Full-scale pipe tests
 - ❖ Task 9 Bending tests for (12") pipes with
 - Transition welds,
 - Corrosion defects, and
 - Plain dents.
 - Task 10 Burst tests of (12") pipes with corrosion defects under bending
 - ❖ Task 11 Post-buckling burst tests of (24") pipes
 - ❖ Task 12 Tensile tests of (12") pipes with corrosion defects
- Curved wide plate tests
 - Task 13 CWP tensile tests of (36") pipes with
 - Girth welds (SMAW) of same wall thickness
 - Girth welds (FCAW) with thickness transition

Task 9 Bend Test of Pipes with Anomalies

- Task 9b: full-scale bending tests of pipes with corrosion defects compressive strain capacity
 - Loading sequence
 - I: Apply internal pressure
 - ▶ II: Apply axial compression to cancel the pressure-generated axial force
 - ▶ III: Apply bending till wrinkle forms

Numerical Simulation of Bend Test (Task 9)

- Objectives:
 - Provide assistance in specimen design and instrumentation plan
- □ Observations:
 - Wrinkle is formed inside the corrosion defect
 - High strain concentration is found at the wrinkle area

- ❖ End effect ~ 0.5 OD
- □ Recommendations
 - Strain should be measured 2 OD away from the defect
 - If gauge length = 1 OD, the min specimen length should be 7 OD + defect length

Task 11 Post-Buckling Burst Test

- Post-buckling burst tests effect of buckle induced hoop strain
 - Loading sequence
 - ▶ I: Apply internal pressure
 - ▶ II: Apply compression force till wrinkle forms
 - ▶ III: Fixed axial displacement at pipe ends and increase pressure till burst

Numerical Simulation of Bucking Process (Task 11)

- Objectives
 - Provide assistance on specimen design and instrumentation plan
- Observations
 - For a plain pipe, it was found that the wrinkles tended to form at the ends of the pipe due to the discontinuity induced by the end conditions.
 - For a pipe containing a girth weld:
 - ▶ The wrinkle location depends on the competition between the discontinuities induced by the pipe ends and the girth weld.
 - ▶ The existence of the girth weld could increase the chances for making the wrinkles away from the pipe ends, but cannot guarantee it.
- Recommendations
 - Use pipes with girth welds
- Discussions
 - Other methods for controlling wrinkle locations

Effect of Pipe Strength Variations

- Objectives:
 - Understand the effect of pipe strength variation on tensile strain design
- □ Problem analyzed:
 - Landslide transverse to pipeline

Pipes of higher strength (strong pipe)

Pipes of lower strength (weak pipe)

Strong pipe: YS = 76 ksi, UTS = 86 ksi

Weak pipe 1: YS = 71 ksi, UTS = 78 kisi

Weak pipe 2: YS = 65 ksi, UTS = 78 ksi

Strong – weak pipe 1: $\Delta YS = 5$ ksi, $\Delta UTS = 8$ ksi

Strong – weak pipe 2: $\Delta YS = 11 \text{ ksi}$, $\Delta UTS = 8 \text{ ksi}$

Effect of Pipe Strength Variations

Observations:

- The strain in the pipe string varies due to the pipe strength variation
- The strain at a given point depends on the relative location of the strong/weak pipes and the ground movement.
- The strain in the strong and weak pipes can be very different.

Status and Major Outcome

- Major efforts so far
 - Significant efforts on material procurement and weld fabrication
 - ► The overall picture is clear and the plan is in place.
 - ► The completion time is delayed.
 - Coordination with ASAP on small scale tests
 - Modeling effort in support of test specimen design and instrumental plan
 - Initial model development activities
- Contractual efforts
 - Contract Mod #2 was signed and the project is fully funded.
 - Contract Mod #3 is to be submitted by 9/15.
- Analysis to support full-scale tests
 - The specimen length for the bending tests of pipes with corrosion defects is increased with recommendations from FEA results.
 - For the post-buckling burst tests, a pipe section with girth weld is recommended.
- Model development
 - The joint-to-joint pipe strength variation was found to have large influence on the strain distribution along the pipe string.

Future Plan

- Work plan for the next 30 days
 - Submit contract Mod #3
 - Continue pipe procurement and weld fabrication
 - Continue analysis for the testing support and model development

Questions

□ Thank you!

